نسبیت (Relativity)
نسبیت (Relativity)
  • مربوط به موضوع » <-CategoryName->

نسبیت (Relativity)

 

نگاه اجمالی

  • نسبیت یکی از شاخه‌های مهم فیزیک است که جنبه‌های نظری و عملی آن از قرن گذشته توجه فیزیکدانان را به خود جلب کرده است. نظریه‌هایی مانند مکانیک و الکترومغناطیس که قبل از نظریه نسبیت ظهور یافتند و یا نظریه‌هایی مانند مکانیک کوانتومی و نظریه ریسمان که بعد از نسبیت پدید آمدند در فرمول بندی‌های مناسب با نسبیت سازگاری پیدا کرده‌اند. ضرورت این سازگاری به دلیل شمول فراگیر نظریه نسبیت پیش آمده است و خوشبختانه تا این زمان بین نظریه‌های دیگر تضاد یا سازگاری مشاهده نشده است.
     
  • نظریه نسبیت از نقش چارچوبهای مرجع که در توصیف قوانین طبیعت بکار می‌روند، نهایت استفاده را می‌کند. استفاده از هندسه مختصاتی ، برای بیان موثر قوانین معلوم ، و نیز استنتاج قوانین فیزیکی جدید تعمیم داده می‌شود. هدف نسبیت این است که برای بیان قوانین فیزیک روشهایی بدست آورد به طوری که قوانین مزبور توسط مختصات چارچوب مرجعی که در آن نوشته می‌شوند تغییر نیافته یا متمایز نشوند. اصلی که فرض می‌کند چنین روشهای بیان لازم بوده و می‌توانند بدست آیند، اصل ناورلایی است.

تاریخچه

در اواخر قرن نوزدهم ، بعد از اینکه نظریه الکترومغناطیس کلاسیک به صورت کنونی‌اش توسعه یافت، نیاز به یک نظریه نسبیت رضایتبخش در فیزیک احساس شد. در آن زمان آشکار شد که مشاهدات تجربی انتشار نور در ارتباط با اثرهای حرکت ناظر نسبت به محیطی که فرض می‌شد نور در آن حرکت ‌کند، تناقص‌هایی با عقاید رایج آن زمان دارد. برای داشتن توصیفی از حرکت نور که با تجربه سازگار باشد، لازم شد قانون تبدیل پیشنهادی لورنتس که مختصات
چارچوبهای دارای حرکت نسبی یکنواخت را به هم مربوط می‌سازد، پذیرفته شود.

مکانیک کلاسیک (Classical Mechanics)

نگاه اجمالی:


مکانیک کلاسیک یکی از قدیمیترین و آشناترین شاخه‌های فیزیک است. این شاخه با اجسام در حال سکون و حرکت ، و شرایط سکون و حرکت آنها تحت تاثیر نیروهای داخلی و خارجی ، سرو‌ کار دارد. قوانین مکانیک به تمام گستره اجسام ، اعم از میکروسکوپی یا ماکروسکوپی، از قبیل الکترونها در اتمها و سیارات در فضا یا حتی به کهکشانها در بخش‌های دور دست جهان اعمال می‌شود.
 

سینماتیک حرکت:

 

سینماتیک به توصیف هندسی محض حرکت ( یا مسیرهای) اجسام ، بدون توجه به نیروهایی که این حرکت را ایجاد کرده‌اند ، می‌پردازد. در این بررسی عاملین حرکت (نیروهای وارد بر جسم) مد نظر نیست و با مفاهیم مکان ،

سرعت

،

شتاب

،

زمان

و روابط بین آنها سروکار دارد. در این علم ابتدا اجسام را بصورت ذره نقطه‌ای بررسی نموده و سپس با مطالعه حرکت جسم صلب حرکت واقعی اجسام دنبال می‌شود.

 

حرکت اجسام به دو صورت مورد بررسی است:

 

 


 

دینامیک حرکت :

 

دینامیک به نیروهایی که موجب تغییر حرکت یا خواص دیگر ، از قبیل شکل و اندازه اجسام می‌شوند می‌پردازد. این بخش ما را با مفاهیم نیرو و جرم و

قوانین حاکم بر حرکت

اجسام هدایت می‌کند. یک مورد خاص در دینامیک

ایستاشناسی

است که با اجسامی که تحت تاثیر نیروهای خارجی در حال سکون هستند سروکار دارد.

 

پایه گذاران مکانیک کلاسیک:

 

  • با این که شروع مکانیک از کمیت سرچشمه می‌گیرد ، در زمان ارسطو فرایند فکری مربوط به آن گسترش سریعی پیدا کرد. اما از قرن هفدهم به بعد بود که مکانیک توسط گالیله ، هویگنس و اسحاق نیوتن بدرستی پایه‌گذاری شد. آنها نشان دادند که اجسام طبق قواعدی حرکت می‌کنند ، و این قواعد به شکل قوانین حرکت بیان شدند. مکانیک کلاسیک یا نیوتنی عمدتا با مطالعه پیامدهای قوانین حرکت سروکار دارد.

 

  • قوانین سه گانه اسحاق نیوتن راه مستقیم و سادهای به موضوع مکانیک کلاسیک می‌گشاید.این قوانین عبارتند از:

    • قانون اول نیوتن:
      هر جسمی به حالت سکون یا حرکت یکنواخت خود در روی یک خط مستقیم ادامه می‌دهد مگر اینکه یک نیروی خارجی خالص به آن داده شود و آن حالت را تغییر دهد.
       
    • قانون دوم نیوتن:
      آهنگ تغییر تکانه خطی یک جسم با برآیند نیروهای وارد بر آن متناسب بوده و در جهت آن قرار دارد.
       
    • قانون سوم نیوتن:
      این قانون که به قانون عمل و عکس‌العمل معروف است ، اینگونه بیان می‌شود. هر عملی را عکس العملی است ، مساوی با آن و در خلاف جهت آن.

 

در برسی حرکت اجسام به کمک قوانین نیوتون اجسام به صورت ذره‌ای در نظر گرفته می‌شود. بنابراین ، بررسی حرکات سیستم های چند ذره‌ای ،

اجسام صلب

، دستگاه‌های با جرم متغیر ، حرکات جفت شده و ... به کمک قوانین اسحاق نیوتن به سختی صورت می‌گیرد.

لاگرانژ

و

هامیلتون

دو روش مستقلی را برای حل این مشکل پیشنهاد کردند. در این روشها برای هر سیستم یک لاگرانژین (هامیلتونین) تعریف کرده ، سپس به کمک معادلات اویلر-لاگرانژ (هامیلتون-ژاکوپی) حرکات محتمل سیستمها مورد بررسی قرار می‌گیرد.

 

موارد شکست فرمولبندی اسحاق نیوتن :

 

  • تا آغاز قرن حاضر . قوانین اسحاق نیوتن بر تمام وضعیتهای شناخته شده کاملا قابل اعمال بودند. مشکل هنگامی بروز کرد که این فرمولبندی به چند وضعیت معین زیر اعمال شدند:

 

  • اجسام بسیار سریع:
    اجسامی که با سرعت نزدیک به سرعت نور حرکت می‌کنند.

 

  • اجسام با ابعاد میکروسکوپی مانند الکترونها در اتم‌ها.

 

شکست مکانیک کلاسیک در این وضعیتها ، نتیجه نارسایی

مفاهیم کلاسیکی فضا

و زمان است.

 

مکمل مکانیک کلاسیک:


مشکلات موجود در سر راه مکانیک کلاسیک منجر به پیدایش دو نظریه زیر شد:

  • فرمولبندی نظریه نسبیت خاص برای اجسام متحرک با سرعت زیاد

 

بعد چهارم
-=در ریاضیات ، فیزیک و برخی از علوم دیگر علاوه بر مختصات فضایی زمان نیز حضور دارد. وابستگی مسایل به زمان در بررسی فضایی و نمایش محوری تحت عنوان بعد چهارم مطرح است که با ادغام این بعد با مختصه‌های فضایی ، زمان تحت عنوان بعد چهارم مورد مطالعه قرار می‌گیرد.=-

دید کلی

زمان به مفهوم متداول یعنی «چه وقت» ، و نیز «کجا» به معنای تعیین مکان یا موقعیت در فضاست. مفهوم کلمه فضا بطور مطلق غیر قابل ادراک است. از نظر یک عامل خرید و فروش املاک ، فضا چیزی است که او حدود آن را به صورت یک قطعه زمین تعیین می‌کند و به فروش می‌رساند. در نزد علاقمندان به اکتشافات فضایی ، فضا چیزی است که به بیرون از مرزهای سیاره ما امتداد می‌یابد. بطور عادی نمی‌توانیم فضا را تصور کنیم، گرایش ما چنین است که مفهوم فضا را ، با توجه به استنباط تجربی خود به اشیای مادی ارتباط دهیم.

ما فراگرفته‌ایم که به هنگام بحث درباره فضا از آن به صورت نشانه‌های مرتبط با موقعیت نسبی اجسام صحبت کنیم. برحسب چنین تعبیرهایی ، فضا به شکل مفهوم فیزیکی تلقی می‌شود و به مشاهده‌هایی منحصر می‌شود که اشیای مادی مواضع مختلف را اشغال می‌کنند. این طرز تلقی از فضا ، هنگامی ‌که موقعیت همه اجسام را نسبت به یک جسم ، مثلا زمین ، تعیین کنیم، موجه است. چنین برداشتی از فضا باعث شده است که هندسه اقلیدسی ، برای مقاصد علمی‌ متعددی مناسب به نظر آید و نقطه ، خط راست و صفحه اغلب به عنوان سرشتی بدیهی پذیرفته شود.

تصور همزمانی

در مکانیک عادی به نظر می‌رسد که هر رویدادی بوسیله مکان (ارتباط موقعیت Position relationship) و زمان (ارتباط زمانی Temporal relationship) مشخص می‌شود. به فضای دوبعدی و سه‌بعدی (هندسه) مفهوم اجتناب‌ناپذیر زمان هم اضافه شد. اما فضا باز هم می‌تواند به عنوان بعدی کاملا مستقل و قابل استفاده در فیزیک کلاسیک ، پذیرفتنی باشد. این تلفیق ، به دلیل آنچه اینک به مثابه تصور همزمانی خوانده می‌شود، مقدور بود. یعنی هنگامی‌ که خبر یک رویداد (مثلا حرکت یک سیاره) را به کمک نور ، بطور آنی دریافت می‌کنیم، اینطور می‌فهمیم که رویداد یا شده در اینجا و هم اکنون رخ داده است.

رد تصور همزمانی

کشف قوانین الکترودینامیک ، اعتقاد به این همزمانی مطلق را برهم زد. ماکسول ، فیزیکدان اسکاتلندی قرن نوزدهم ، پی برد که آشفتگی‌ها در میدان الکترومغناطیسی با سرعتی معین ، یعنی سرعت نور حرکت می‌کنند و این حرکت از طول موج آنها مستقل است. نور حالت خاصی از تمام آشفتگی‌هایی است که پدیده موجی به شمار می‌آیند.

هاینریش هرتز ، فیزیکدان آلمانی ، بعدا کشف کرد که آشفتگیهای الکتریکی عادی ، یعنی جرقه‌ها ، می‌توانند در فواصل اندک ، میدان الکتریکی تولید کنند. این موضوع منجر به آشکارسازی و انتقال امواج رادیویی با طول موجهای گوناگون شد که امواج بلند بکار رفته در تلگراف و امواج کوتاه تلویزیونی و رادار را دربر می‌گیرد. خاصیت اساسی تابش الکترومغناطیسی ، علاوه بر طول موج ، فرکانس آن ، یعنی تعداد نوسانهای موج در هر ثانیه است. واحد اندازه‌گیری فرکانس ، هرتز (دور در ثانیه) است.

تعیین فاصله به کمک نور

به کمک رادار روشی برای اندازه‌گیری فاصله فراهم شده است که در آن به معیار و سنجه نیازی نیست. آنچه باید انجام شود، عبارت از اندازه‌گیری زمان لازم و آنگاه ضرب کردن آن در مقداری ثابت ، یعنی سرعت نور ، است. به بیان دیگر ، یک پرتو کوتاه موجی را به سوی هدفی که می‌خواهند فاصله آن را مشخص کنند، ارسال می‌دارند. پرتو یاد شده بعد از برخورد به هدف دوباره بازتابیده می‌شود.

حال اندازه‌گیری فاصله با توجه به زمان طی شده از لحظه ارسال پرتو موجی به طرف هدف و لحظه دریافت بازتابش صورت می‌گیرد. از آنجا که می‌دانیم امواج رادیویی با سرعت نور حرکت می‌کنند، لذا زمان طی شده برحسب ثانیه را در سرعت نور (300000 کیلومتر در ثانیه) ضرب کرده و عدد حاصل را به دو تقسیم می‌کنند. به این صورت فاصله هدف یا شی مورد نظر به آسانی حاصل می‌شود.

سخن آخر

در امور روزمره زندگی ، از قبیل تعیین وقت یک مسابقه ، یا نصب راداری برای تعیین سرعت اتومبیلها ، نور نقش چندانی ندارد، اما با در نظر گرفتن ماهیت عالم ، چنین جنبه‌هایی از زمان و فاصله اهمیت پیدا می‌کند. همین که می‌فهمیم زمان و فاصله یکی هستند، آنگاه متوجه خواهیم شد ستاره‌ای که می‌بینیم، پدیده‌های مربوط به اینجا و زمان حال نیست، بلکه نور آن پس از میلیاردها سال طی طریق به ما رسیده است.

بنابراین ستاره مورد نظر میلیاردها سال از ما فاصله دارد و آنچه در زمان حال شاهد آن هستیم، رویدادی بوده است که در گذشته بعید به وقوع پیوسته است (نور آینه گذشته). بنابراین ، هنگامی ‌که فضا و زمان انفکاک‌ناپذیر باشند، به نحوی که نتوان بدون اندیشیدن درباره هر دو مفهوم ، به دیگری فکر کرد، زمان نیز مانند مکانیک کلاسیک به صورت یک بعد در می‌آید و فضا ـ زمان به بعد چهارم تبدیل می‌شود.

مباحث مرتبط با عنوان

نسبیت خاص

مقدمه

در دهه اول قرن بیستم انقلابی در فلسفه علوم طبیعی پیش آمد که بسیاری آن را از حیث عمق معنا و درهم ریزی احکام موجود پذیرفته شده ، نسبت به انقلاب کوپرنیکی - گالیله‌ای ، برتر به شمار می‌آورند. در این فاصله زمانی دو نظریه بسیار مهمی پا به عرصه رقابت نهادند ، نظریه نسبیت و کوانتمی که نسبت به کارهای دانشمندان پیشین از جمله ماکسول ، سارین ، کلوین و کلاوزیوس به نحو چشمگیری متفاوت بودند. این نظریه‌های جدید با مکانیک نیوتونی نیز در بعضی از اصول و فرضهای بنیادی اختلاف شدیدی داشتند.

این نظریه علاوه بر اینکه در برگیرنده پیچیدگیهای ریاضی است، تصور ذهنی و فهم آن ، بسیار دشوار است. البته شایان ذکر است که انیشتین در مقاله 1905 خود که برای اولین بار به نسبیت خاص خود پرداخت، از معادلات ریاضی ساده استفاده کرد. اما در مقاله 1919 که به نسبیت عام پرداخت ، بر خلاف مقاله پیشین از فرمولهای پیجیده ریاضی استفاده کرد. نسبیت از ریشه نسبی گرفته شده است ، یعنی هر کدام از واحدهای فیزیکی شناخته شده برای توصیف پدیده‌های طبیعی ، نسبی هستند. به عبارت دیگر می‌توان گفت که بر اساس نسبیت ، جرم ، سرعت ، شتاب و حتی زمان که برای ما تعریف می‌شوند، نسبی هستند.

 

نظریه نسبیت

نسبیت عام برای حرکتهایی ساخته شده که در خلال حرکت سرعت تغییر می کند یا به اصطلاح حرکت شتابدار دارند. شتاب گرانش زمین g که همان عدد 9.81m/s است نیز یک نوع شتاب است. پس نسبیت عام با شتابها کار دارد نه با حرکت. نظریه‌ای است راجع به اجرامی که شتاب ثقل دارند. کلا هر جا در عالم ، جرمی در فضای خالی باشد حتما یک شتاب جاذبه در اطراف خود دارد که مقدار عددی آن وابسته به جرم آن جسم می‌باشد. پس در اطراف هر جسمی شتابی وجود دارد.

نسبیت عام با این شتابها سر و کار دارد و بیان می‌کند که هر جسمی که از سطح یک سیاره دور شود زمان برای او کندتر می‌شود. یعنی مثلا ، اگر دوربینی روی ساعت من بگذارند و از عقربه‌های ساعتم فیلم زنده بگیرند و روی ساعت آدمی که دارد بالا میرود و از سیاره زمین جدا می‌شود هم دوربینی بگذارند و هر دو فیلم را کنار هم روی یک صفحه تلویزیونی پخش کنند، ملاحظه خواهیم کرد که ساعت من تندتر کار می‌کند. نسبیت عام نتایج بسیار عجیب و قابل اثبات در آزمایشگاهی دارد. مثلا نوری که به اطراف ستاره‌ای سنگین می‌رسد کمی به سمت آن ستاره خم می‌شود. سیاهچاله‌ها هم بر اساس همین خاصیت است که کار می‌کنند. جرم آنها به قدری زیاد و حجمشان به قدری کم است که نور وقتی از کنار آنها می‌گذرد به داخل آنها می‌افتد و هرگز بیرون نمی‌آید.

همه ما برای یکبار هم که شده گذرمان به ساعت ‌فروشی افتاده است و ساعتهای بزرگ و کوچک را دیده ایم که روی ساعت ده و ده دقیقه قرار دارند. ولی هیچگاه از خودمان نپرسیده‌ایم چرا؟ آلبرت انیشتین در نظریه نسبیت خاص با حرکت شتابدار و یا با گرانش کاری نداشت. اینیشتین در سال 1919 ، با ترمیم و تعمیم نسبیت خود ، نسبیت عام را مطرح کرد. نسبیت عام برخلاف نسبیت خاص ، در بر گیرنده معادلات و پیچیدگیهای ریاضی بود. یکی از پیش بینیهای این نظریه آن بود که ساعتها در میدان گرانشی بسیار قوی ، کندتر کار می‌کنند و همچنین نور در میدان گرانشی بسیا قوی ، در مسیر مستقیم خود منحرف می‌شوند.

این نظریه توانست به بسیاری از معماهای کیهان شناسی در مورد سیاهچاله ، عمر کرات و سیارات ، انرژی ستاره‌ها و کهکشانها ، چگالی جهان و ... پاسخ دهد. به اعتقاد وی تأثیرات جاذبه و شتاب جدایی ناپذیر بوده و بنابراین باهم برابرند. او همچنین نحوه ارتباط نیروهای جاذبه به انحنای فضا _ زمان را تشریح نمود.


 

تصویر

 

انحنای فضا _ زمان

انیشتن با استفاده از قوانین ریاضی نشان داد که چگونه هر جسمی ، به فضا _ زمان اطراف خود انحنا می‌بخشد. در مورد بعضی اجسام ، مثل ستارگان که جرم نسبتا زیادی دارند، این انحنا می‌تواند باعث تغییراتی در مسیر هر چیز که از کنار آن می‌گذرد شود، و نور نیز از این قاعده مستثنی نمی‌باشد. این نظریه با چارچوبهای نالخت سر و کار دارد و در کیهان شناسی و گرانش کاربرد دارد. فرض اساسی نسبیت عام این است که تمام دستگاههای مختصات که در حالتهای حرکت اختیاری هستند، برای بیان ریاضی قوانین فیزیک باید به یک اندازه مناسب باشند. بنابراین ، باید برای نوشتن قوانین فیزیک روشهایی یافت، بطوری که تحت هر تبدیل مختصات دلخواه ، تغییری در شکل آنها حاصل نشود.

نقش تساوی جرم گرانشی و جرم لختی

نقش تساوی جرم گرانشی و جرم لختی در پیشرفت نسبیت مساوی بودن جرم گرانشی و جرم لختی نقش اساسی در پیشرفت تاریخی نسبیت عام داشت. منشأ تساوی مزبور در این نکته است که قانون دوم نیوتن f = ma برای شتابهای گرانشی در میدان گرانشی با شدت g ، بصورت mGg = mAa در می‌آید. چون مشاهده می‌شد که در یک میدن گرانشی هر اشیاء به یک میزان شتاب می‌گیرند، یعنی g = a انیشتین به تحقیق دریافت که گرانش اساسا یک پدیده سینماتیکی است که شامل تغییر در مختصات فضا و زمان در همسایگی منبع میدان گرانشی است.


 

تصویر

 

نظریه نسبیت عام در کیهان شناسی و نجوم

ظهور نظریه نسبیت عام دید گرانشی را بکلی تغییر داد و در این نظریه جدید نیروی گرانش را مانند خاصیتی از فضا در نظر گرفت نه مانند نیرویی بین اجرام ، یعنی برخلاف آنچه که اسحاق نیوتن گفته بود. در نظریه او فضا در مجاورت ماده کمی انحنا پیدا می‌کرد. در نتیجه حضور ماده اجرام ، مسیر یا به اصطلاح کمترین مقاومت را در میان منحنیها اختیار می‌کردند. با اینکه فکر آلبرت انیشتین عجیب به نظر می‌رسید می‌توانست چیزی را جواب دهد که قانون ثقل نیوتن از جواب دادن آن عاجز می‌ماند. سیاره اورانوس در سال 1781 میلادی کشف شده بود و مدارش به دور خورشید اندکی ناجور به نظر می‌رسید و یا به عبارتی کج بود!

نیم قرن مطالعه این موضوع را خدشه ناپذیر کرده بود. بنابر قوانین اسحاق نیوتن می‌بایست جاذبه‌ای برآن وارد شود. یعنی باید سیاره‌ای بزرگ در آن طرف اورانوس وجود داشته باشد تا از طرف آن نیرویی بر اورانوس وارد شود. در سال 1846 میلادی اختر شناس آلمانی دوربین نجومی خودش را متوجه نقطه‌ای کرد که «لووریه» گفته بود و بی هیچ تردید سیاره جدیدی را در آنجا دید که از آن پس نپتون نام گرفت. نزدیکترین نقطه مدار سیاره عطارد به خورشید در هر دور حرکت سالیانه سیاره تغییر می‌کرد و هیچگاه دو بار پشت سر هم این تغییر در یک نقطه خاص اتفاق نمی‌افتاد.

اختر شناسان بیشتر این بی نظمی‌ها را به حساب اختلال ناشی از کشش سیاره‌های مجاور عطارد می‌دانستند! مقدار این انحراف برابر 43 ثانیه قوس بود. این حرکت در سال 1845 بوسیله لووریه کشف شد، بالاخره با ارائه نظریه نسبیت عام جواب فراهم شد. این فرضیه با اتکایی که بر هندسه نا اقلیدسی داشت نشان داد که حضیض هر جسم دوران کننده حرکتی دارد علاوه برآنچه اسحاق نیوتن گفته بود.
وقتی که فرمولهای آلبرت انیشتین را در مورد سیاره عطارد بکار بردند، دیدند که با تغییر مکان حضیض این سیاره سازگاری کامل دارد.

سیاره‌هایی که فاصله شان از خورشید بیشتر از فاصله تیر تا آن است تغییر مکان حضیضی دارند که بطور تصاعدی کوچک می‌شوند. اثر بخش‌تر از اینها دو پدیده تازه بود که فقط نظریه آلبرت انیشتین آنرا پیشگویی کرده بود. نخست آنکه آلبرت انیشتین معتقد بود که میدان گرانشی شدید موجب کند شدن ارتعاش اتمها می‌شود و گواه بر این کند شدن تغییر جای خطوط طیف است به طرف رنگ سرخ!

انتقال به سرخ

یعنی اینکه اگر ستاره‌ای بسیار داغ باشد و بطوری که محاسبه می‌کنیم بگوییم که نور آن باید آبی درخشان باشد، در عمل سرخ رنگ به نظر می‌رسد. کجا برویم تا این مقدار قوای گرانشی و حرارت بالا را داشته باشیم، پاسخ مربوط به کوتوله‌های سفید است. دانشمندان به بررسی طیف کوتوله‌های سفید پرداختند و در حقیقت تغییر مکان پیش بینی شده را با چشم دیدند! اسم اینرا تغییر مکان آلبرت انیشتینی گذاشتند.


 

تصویر

 

خمش نور در میدان گرانشی

آلبرت انیشتین می‌گفت که میدان گرانشی شعاعهای نور را منحرف می‌کند، چگونه ممکن بود این مطلب را امتحان کرد. اگر ستاره‌ای در آسمان آن سوی خورشید درست در امتداد سطح آن واقع باشد و در زمان کسوف ، خورشید قابل رؤیت باشد، اگر وضع آنها را با زمانی که فرض کنیم خورشیدی در کار نباشد مقایسه کنیم خم شدن نور آنها مسلم است. درست مثل موقعی که انگشت دستتان را جلوی چشمتان در فاصله 8 سانتیمتری قرار دهید و یکبار فقط با چشم چپ و بار دیگر فقط با چشم راست به آن نگاه کنید، به نظر می‌رسد که انگشت دستتان در مقابل زمینه پشت آن تغییر جا می‌دهد، ولی واقعا انگشت شما که جابجا نشده است!

دانشمندان در موقع کسوف در جزیره پرنسیپ پرتغال واقع در آفریقای غربی دیدند که نور ستاره‌ها بجای آنکه به خط راست حرکت کنند در مجاورت خورشید و در اثر نیرو ی گرانشی آن خم می‌شوند و بصورت منحنی در می‌آیند. یعنی ما وضع ستاره‌ها را کمی بالاتر از محل واقعیش می‌بینیم. ماهیت تمام پیروزیهای نظریه نسبیت عام آلبرت انیشتین نجومی بود، ولی دانشمندان حسرت می‌کشیدند که ای کاش راهی برای امتحان آن در آزمایشگاه داشتند. البته اخیرا چندین آزمایش عملی برای آزمون این نظریه به توسط دانشمندان فیزیک و کیهان شناسی ساخته شده است.

زمان نسبی

طبق نظریه

نسبیت خاص

،

زمان

، مطلق (ثابت) نیست. بنابراین نظریه، هر چه حرکت خطی جسم افزایش یابد، زمان برای ان جسم کندتر می شود. این نظریه با استفاده از دو

ساعت اتمی

که یکسان تنظیم شده بودند ثابت شده است.

 

برای اینکار، یکی از ساعتها را در زمین نگاه داشته و دیگری را در یک

هواپیمای جت

بسیار سریع قرار می دهند. بعد از مقایسه می بینیم که ساعت ثابت در زمین، همیشه کمی جلوتر از ساعت متحرک است.







img/daneshnameh_up/e/ec/Zamannesbi.jpg

 

طول نسبی

جورج فیتز جرالد

(1901_1851)،

فیزیکدان ایرلندی

، اعلام کرد که

ماده

در جهت حرکتش

منقبض

(فشرده) می شود. یعنی در نظر یک بیننده

ساکن

،

طول موشک

هنگامیکه در حدود

سرعت نور

حرکت می کند کوتاهتر از زمانی است که حرکت نمی کند.

 

در این حین، سرنشینان موشک در حال حرکت متوجه هیچگونه تغییری نمی شوند.

آلبرت انیشتین

نشان داد که اجسام، هنگامیکه با سرعت نور حرکت کنند، به طول صفر خواهند رسید.






img/daneshnameh_up/9/94/Toolenesbi.jpg

نقطه دید هرگاه سرعت موشکی نزدیک به سرعت نور شود
ناظران خارج از موشک شکل آنرا بگونه ای متفاوت خواهند دید .

 

فضا-زمان

مقدمه

بررسی و شناخت پدیده‌های فیزیکی و روابط بین آنها بدون توجه به مفاهیم و درک شهودی از فضا و زمان چندان مأنوس به نظر نمی‌رسد. مفهوم و درک فضا و زمان نیز مانند سایر کمیتهای فیزیکی روندی پویا دارد و در طول تاریخ دستخوش تغییرات زایدی شده است. بویژه بعد از نسبیت مفاهیم فضا و زمان و درک بشر از آنها دچار تغییر زیادی شده است.



img/daneshnameh_up/9/9e//Fazavazaman.jpg
این نمودار مسیر حرکت یک شخص در
پیوستار فضا_زمان را نشان می‌دهد.

دویست سال قبل از آنکه آلبرت انیشتین (1955_1879) نظریه‌های نسبیت خود را ارائه کند، اسحاق نیوتن (1727_1643) ، ریاضیدان انگلیسی ، اعلام کرده که فضا کاملاً مجزا از زمان می‌باشد. اما در ریاضی نسبیت ، زمان و سه بعدی فضایی _ طول ، عرض ، ارتفاع با همدیگر ، یک چهارچوب چهار بعدی به نام پیوستار فضا _ زمان را تشکیل می‌دهند.

فض

نظرات شما عزیزان:

نام :
آدرس ایمیل:
وب سایت/بلاگ :
متن پیام:
:) :( ;) :D
;)) :X :? :P
:* =(( :O };-
:B /:) =DD :S
-) :-(( :-| :-))
نظر خصوصی

 کد را وارد نمایید:

 

 

 

عکس شما

آپلود عکس دلخواه:







کد حرکت متن دنبال موس